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The Fourth Virial Coefficient of a Fluid of Hard
Spheres in Odd Dimensions
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The fourth virial coefficient is calculated exactly for a fluid of hard spheres in
odd dimensions up to 11.
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1. INTRODUCTION

The virial expansion of a fluid of hard spheres has been studied for more
than a century, but has not yet been solved. Clisby and McCoy(1) recently
made some progress by calculating the exact value of the fourth virial
coefficient in even dimensions 4 through 12. Previously the fourth virial
coefficient had been analytically calculated in three dimensions by Boltz-
mann(2) in 1899, and in two dimensions by Rowlinson(3) in 1964 and inde-
pendently by Hemmer(4) in 1965. The second virial coefficient in three
dimensions had already been calculated by van der Waals(5) and the third
had been calculated independently by Boltzmann(6) and Jäger.(7) Luban
and Baram(8) found functions that give the second and third virial coeffi-
cients in any dimension. They also found general functions for the two
lower order diagrams in the fourth virial coefficient, but they did not find
such a function for the complete star. Luban and Michels(9) later obtained
the four point complete star in 4 and 5 dimensions analytically as triple
infinite sums.

In this paper we compute exactly the general expression for the fourth
virial coefficient of a fluid of hard spheres in odd dimensions up to 11.
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We consider the low density expansion of a fluid of D-dimensional
hard spheres. The position of the ith particle is written as ri , and the
distance between two points is written as rij = |ri − rj |. φ(rij ) is the pair
potential of two points. For a fluid of hard spheres this is

φ(rij )=
{∞ if rij <σ,

0 if rij �σ. (1)

The Hamiltonian is

H =
N∑

i<j=2

φ(rij )+
N∑
i=1

p2
i

2m
. (2)

For low densities

P/kT =ρ+
∞∑
n=2

Bnρ
n (3)

where ρ=N/V .
There are several systematic ways to formalise the calculation of the

virial coefficients Bn. One of these methods is the Mayer expansion.(10,11)

In this expansion a function called the Mayer f function is defined:

f (rij )= e−φ(rij )/kT −1. (4)

The virial coefficients are given by(11)

Bn+1 =− n

n+1
1
n!V

∫
V

. . .

∫
V

Vn+1(r1, . . . , rn)dDr1 · · ·dDrn (5)

where Vn+1 is the collection of labelled biconnected Mayer diagrams with
n points. Each bond of these diagrams represents a function f (rij ) in the
integrand of (5). Explicitly

B2 =−1
2

∫
V

f (r12)d
Dr2 =−1

2
, (6)

B3 =−1
3

∫
V

f (r12)f (r13)f (r23)d
Dr2d

Dr3 =−1
3

, (7)
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B4 =−1
8

− 3
4

− 3
8

. (8)

For hard spheres the Mayer f function is

f (rij )=
{−1 if rij <σ,

0 if rij �σ. (9)

From now on we let σ = 1. If a hard sphere potential is considered, B2
and B3 can be explicitly evaluated using the formulae(8)

B2 = πD/2

2�(D/2+1)
(10)

and

B3

B2
2

= 4�(1+D/2)
π1/2�((1+D)/2)

∫ π/3

0
sinD ϕ dϕ. (11)

The integral in (11) is easily evaluated. Let m be any positive integer, and
let u be any positive number. According to ref. (12, p. 159)

∫ u

0
sin2m x dx = (2m−1)!!

2mm!
u− cosu

2m

{
sin2m−1 u

+
m−1∑
k=1

(2m−1)(2m−3) · · · (2m−2k+1)
2k(m−1)(m−2) · · · (m−k) sin2m−2k−1 u

}

(12)

and∫ u

0
sin2m+1 x dx = 2mm!

(2m+1)(2m−1)!!
− cosu

2m+1

{
sin2m u

+
m−1∑
k=0

2k+1m(m−1) · · · (m−k)
(2m−1)(2m−3) · · · (2m−2k−1)

sin2m−2k−2 u

}
.

(13)

Table I shows the values of the second and third virial coefficients in
dimensions two to eight. The evaluation of B4 using the Mayer formalism
is much more difficult. This calculation was done in two dimensions inde-
pendently by Rowlinson(3) in 1964 and by Hemmer(4) in 1965, and recently
in dimensions 4, 6, 8, 10 and 12 by Clisby and McCoy.(1) The results
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Table I. The Second and Third Virial Coefficients

D B2 B3/B
2
2 Decimal expansion

2 π/2 4/3−√
3/π 0.78200 . . .

3 2π/3 5/8 0.625
4 π2/4 4/3− (3/2)√3/π 0.50634 . . .
5 4π2/15 53/27 0.41406 . . .
6 π3/12 4/3− (9/5)√3/π 0.34094 . . .
7 8π3/105 289/210 0.28222 . . .
8 π4/48 4/3− (279/140)

√
3/π 0.23461 . . .

are shown in Table II, along with previous numerical evaluations.(9,13,14)

Explicitly, the method that was used was to calculate the volume of the
intersection of three spheres

vD(r12, r13, r23)=−
∫
V

f (r14)f (r24)f (r34)d
Dr4 (14)

as an intermediate step. It follows from (14) that

=−
∫
V

∫
V

∫
V

f (r13)f (r23)f (r24)vD(r12, r13, r23)d
Dr1d

Dr2d
Dr3. (15)

Rowlinson had prevoiusly calculated v3(r12, r13, r23),(15) but no one
has so far calculated the three dimensional complete star using (15). The
reason is that there are elliptic integrals in the odd dimensional case that
cancel in the even dimensional case.

The history of the computation of B4 in 3 dimensions dates back to
the end of the nineteenth century.(16) Van der Waals formulated a sum of
integrals which he thought would give B4. However, there was one integral
which he could not evaluate (This was the one which is today called the
complete star). Van Laar managed to evaluate this integral and published
his result in 1899.(17) Boltzmann contested van der Waals’ formulation of
the problem, and using the correct virial series expansion he published the
correct result in the same year.(2) Boltzmann’s result was

B4

B3
2

= 2707
4480

+ 219
2240

√
2
π

− 4131
4480

arccos(1/3)
π

. (16)

This result was confirmed in 1952 by Nijboer and van Hove(18) using what
is called the two center formalism.
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Table II. Exact and Numerical Values of the Fourth Virial Coefficient

D B4/B
3
2 Decimal expansion

2 2− 9
2

√
3
π

+10 1
π2 0.53223180 . . .

3 2707
4480 + 219

2240

√
2
π

− 4131
4480

arccos (1/3)
π

0.28694950598 . . .

4 2− 27
4

√
3
π

+ 832
45

1
π2 0.15184606235 . . .

0.151846054(20)(9)

0.15184(7)(13)

5 25315393
32800768 + 3888425

16400384

√
2
π

− 67183425
32800768

arccos (1/3)
π

0.07597248028 . . .
0.075972512(4)(9)

0.07592(6)(13)

0.075978(4)(14)

6 2− 81
10

√
3
π

+ 38848
1575

1
π2 0.03336314 . . .

7 299189248759
290596061184 + 159966456685

435894091776

√
2
π

− 292926667005
96865353728

arccos (1/3)
π

0.00986494662 . . .
0.009873(3)(14)

8 2− 2511
280

√
3
π

+ 17605024
606375

1
π2 −0.00255768 . . .

9 2886207717678787
2281372811001856 + 2698457589952103

5703432027504640

√
2
π

− 8656066770083523
2281372811001856

arccos (1/3)
π

−0.00858079817 . . .
−0.008575(3)(14)

10 2− 2673
280

√
3
π

+ 49048616
1528065

1
π2 −0.01096248 . . .

11 17357449486516274011
11932824186709344256 + 16554115383300832799

29832060466773360640

√
2
π

− 52251492946866520923
11932824186709344256

arccos (1/3)
π

−0.01133719858 . . .
−0.011333(3)(14)

12 2− 2187
220

√
3
π

+ 11565604768
337702365

1
π2 −0.010670281 . . .

We shall extend this two centre computation to odd dimensions
through D=11. The analytic results are given in Table II.

The virial coefficient B4 in odd dimensions has previously been com-
puted by Monte Carlo methods by Ree and Hoover(19) and Clisby and
McCoy.(14) These numerical results gave the first demonstration that the
hard sphere virial coefficients can be negative. The question of negativity
of hard sphere virial coefficients is of great theoretical importance, and in
dimensions D�4 Monte Carlo investigations have thus far seen only pos-
itive Bn for n� 10. The reliability of the conclusions relies on the preci-
sion of the Monte Carlo evaluation and therefore it is of interest to have
an independent confirmation of the error quoted with the Monte Carlo
result. Hence it is most interesting to compare the exact result of B4 for
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D = 5, 7, 9, 11 with the previous Monte Carlo results. This compari-
son is made in Table II. Here we see that the exact results lie within 3
times the quoted error of Clisby and McCoy.(14) This gives some measure
of the accuracy of the Monte Carlo results of ref. 14. The exact results
for D= 4, 5 are within the errors of the computation by ref. 13. On the
other hand, the estimated value of the infinite triple sum for D= 5 given
by ref. 9 is far outside the stated error.

In Section 2 we review the relation between the two center formalism
and the Mayer formalism. In Section 3 we use the two center formalism to
evaluate B4 in dimensions 5, 7, 9 and 11. We conclude in Section 4 with a
discussion of the prospects of obtaining B5 and other higher order coeffi-
cients exactly.

2. THE TWO CENTER FORMALISM

The two center formalism was invented by de Boer in 1949.(20) This
formalism is equivalent(11) to the Mayer formalism, and in the case of
hard spheres it especially useful since it allows the reduction of the dimen-
sion of the integral by D. The invention of this formalism is what inspired
Nijboer and van Hove to confirm Boltzmann’s result for B4 in 1952.(18)

According to the Mayer formalism, B4 is given by (8). According to
the two center formalism

= −4B2 (1)

= −4
3
B2

(
1
2

(1)+2 (1)
)

(17)

= −8
3
B2 (1)

Thus

B4 =B2

(
1
2

(1)+ 1
2

(1)+2 (1)+ (1)
)
. (18)

Here the circles indicate points that are not integrated over, and the num-
ber 1 indicates that the distance between these two points is 1. We shall
use the same notation as Nijboer and van Hove.(18) Thus

χ(r12) := ,

(g1(r12))
2 := ,

ψ(r12) := ,
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ϕ(r12) := . (19)

The functions g1(r12), ϕ(r12) and ψ(r12) are easily calculated for any D.
The calculation of these diagrams in three dimensions is described in the
paper by Nijboer and van Hove.(18) It is easy to do the same calculation in
higher odd dimensions, but we shall omit this since the lower order Mayer
diagrams in B4 are already known in terms of hypergeometric functions.
Luban and Baram(8) showed that

B3
2

= 2D+4

π

�(D+1)[�(D/2+1)]3

�(3D/2+1)[�((D+3)/2)]2 3F2

(
1
2
,1,

−D+1
2

; D+3
2

,
D+3

2
;1

)

(20)

and

B3
2

=−2D+1D3[�(D/2)]2
∫ 1

0
dy y[gD/2(y)]

2, (21)

where

gν(y)=
∫ ∞

0
dx x−ν [Jν(x)]2Jν−1(xy). (22)

If D is odd, then according to ref. (12, p. 1071)

3F2

(
1
2
,1,

−D+1
2

; D+3
2

,
D+3

2
;1

)

=
n∑
k=0

(−1)k
(2k−1)!!

2k
n(n−1) · · · (n−k+1)

[(n+k+1)(n+k) · · · (n+2)]2
, (23)

where D=2n+1 and (−1)!!= (−1)0 =1. Joslin(21) pointed out that

gν(y)=
{

2−νyν−1

�(ν+1/2)�(1/2)

∫ π
2 arcsin (y/2) dϕ cos2ν (ϕ/2) if y <2

0 if y�2.
(24)

Thus, if y <2, n is a positive integer and D=2n+1, then

gD/2(y) = 2−D/2yD/2−1

�(n+1)�(1/2)
2

×
(

1
2n+1

2nn!
(2n−1)!!

− y/2
2n+1

{
(1− (y/2)2)n
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+
n−1∑
k=0

2k+1n(n−1) · · · (n−k)
(2n−1)(2n−3) · · · (2n−2k−1)

(
1− (y/2)2)n−k−1

})
.

(25)

Thus using (23) and (24), the expressions in (20) and (21) can be explicitly
computed in odd dimensions. Clearly both of these are rational numbers
in odd dimensions.

3. INTEGRATION OF THE COMPLETE STAR

We aim to obtain a general expression for χ(1). The only dimensions
lower than 12 for which the exact result has not been published before are
D= 5, 7, 9, 11. We shall calculate χ in dimensions D= 2n+ 1. When n

is an integer, D is an odd integer. However, n need not be an integer. If
n is a half integer, then the calculation below is still valid and gives B4 in
even dimensions. If n is some other positive real number, then the calcu-
lation below may be used to obtain B4 in continuous dimensions. We will
use the fact that

r12 �1. (26)

According to (19)

χ(r12)=
∫
V

∫
V

f (r13)f (r14)f (r23)f (r24)f (r34)d
Dr3d

Dr4. (27)

We define

F(h)=
∫
V

f (rij )e
2πih·(ri−rj )dDri , (28)

where h=|h|. It can be shown that(8)

F(h)=− 1
hD/2

JD/2(2πh), (29)

where Jν is a Bessel function of order ν. We define

G(h, r12)=
∫
V

f (r13)f (r23)e
2πih·[r3− 1

2 (r1+r2)]dDr3. (30)



The Fourth Virial Coefficient of Hard Spheres 755

Clearly

χ(r12)=
∫

RD
F (h)[G(h, r12)]

2dDh. (31)

In D dimensions, we write r= (x1, x2, . . . , xD−1, z)= (x, z) and h= (hx, hz).
r1 and r2 are placed on the z axis in such a way that r1 +r2 =0. From now
on, r12 will be written as r. We first simplify G(h, r). According to (30)

G(h, r) = 2
∫ ∞

0
dz cos(2πzhz)

×
∫
V∩{r|z=constant}

d2nx f ([x2 + (z+ r/2)2]1/2)e2πihx ·x, (32)

where x=|x|. The integral over the hyperplane {r|z=constant} in (32) has
the same form as the integral in (28) if D is replaced by 2n. It therefore
follows from (29) that

G(h, r)= − 2
hnx

∫ 1−r/2
0 dz cos (2πhzz)[1− (r/2+ z)2]n/2

×Jn(2πhx [1− (r/2+ z)2]1/2), (33)

where hx =|hx |. Eq. (31) can be rewritten as

χ(r)=
∫ ∞

−∞
dhz

∫
R2n

d2nhx F (h)[G(h, r)]2. (34)

Since F(h) and G(h, r) are spherically symmetric in the hyperplane {h|hz=
constant}, (34) can be simplified as

χ(r)=
2n−1

∫ ∞

−∞
dhz

∫ ∞

0
dhx h

2n−1
x F (h)[G(h, r)]2, (35)

where 
2n−1 =area(S2n−1)= 2πn

�(n) . It follows from (29), (33) and (35) that

χ(r)=− 8πn

�(n)

∫ 1−r/2

0
dz[1− (r/2+ z)2]n/2

∫ 1−r/2

0
dz′[1− (r/2+ z′)2]n/2

×
∫ ∞

0
dhx

1
hx
Jn

(
2π [1− (r/2+ z)2]1/2hx

)
Jn

(
2π [1− (r/2+ z′)2]1/2hx

)

×
∫ ∞

−∞
dhz

1
(h2
x +h2

z)
D/4

JD/2

(
2π(h2

x +h2
z)

1/2
)

cos (2πhzz) cos (2πhzz′).

(36)
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We rewrite cos (2πhzz) cos (2πhzz′) as

cos (2πhzz) cos (2πhzz′)= 1
2
{cos (2πhz(z+ z′))+ cos (2πhz(z− z′))}.

(37)

According to ref. (12, p. 772)

∫ ∞

−∞
dhz

1
(h2
x+h2

z )
D/4 JD/2

(
2π(h2

x +h2
z)

1/2
)

cos (2πhz(z± z′))
= 1
hnx

[1− (z± z′)2]n/2Jn
(
2πhx [1− (z± z′)2]1/2

)
(38)

Thus χ(r) can be reduced to a three dimensional integral. So

χ(r) = − 4πn

�(n)

∫ 1−r/2

0
dz(α(r/2, z)/2π)n

∫ 1−r/2

0
dz′(α(r/2, z′)/2π)n

×
∫ ∞

0
dhx

1

hx
n+1

Jn(α(r/2, z)hx)Jn(α(r/2, z′)hx)

× {
(α(z, z′)/2π)nJn(α(z, z′)hx) + (α(z,−z′)/2π)nJn(α(z,−z′)hx)

}
,

(39)

where

α(z, z′) = 2π
√

1− (z+ z′)2. (40)

Now we have to evaluate the integral I given by

I =
∫ ∞

0
Jn(α(r/2, z)x)Jn(α(r/2, z′)x)Jn(α(z, z′)x)

1
xn+1

dx. (41)

We integrate by parts and use the recursion relations for Bessel functions

Jν−1(z)+Jν+1(z)= 2ν
z
Jν(z) (42)

and

Jν−1(z)−Jν+1(z)=2
d

dz
Jν(z). (43)
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Then

I = 1
2n
(α(r/2, z)Iα(r/2,z);α(r/2,z′),α(z,z′)

+α(r/2, z′)Iα(r/2,z′);α(r/2,z),α(z,z′)
+α(z, z′)Iα(z,z′);α(r/2,z),α(r/2,z′)), (44)

where

Iα;β,γ =
∫ ∞

0

1
xn
Jn+1(αx)Jn(βx)Jn(γ x)dx (45)

and Iβ;α,γ and Iγ ;α,β are defined as cyclic permutations of the same inte-
gral. We use the formula of Sonine and Dougall(22) to calculate Iα;β,γ . It
says that for any positive constants a, b and c

∫ ∞

0
Jµ(at)Jν(bt)Jν(ct)t

1−µdt= (bc)ν2−µ+1

aµ�(µ−ν)�(ν+1/2)�(1/2)

×
∫ Aa;b,c

0
(a2 −b2 − c2 +2bc cosϕ)µ−ν−1 sin2ν ϕ dϕ, (46)

where

Aa;b,c=



0 if a2<(b− c)2,
arccos b

2+c2−a2

2bc if (b− c)2<a2<(b+ c)2,
π if (b+ c)2<a2.

(47)

Thus

Iα(r/2,z);α(r/2,z′),α(z,z′) = 2−nα(r/2, z′)nα(z, z′)n

α(r/2, z)n+1�(n+1/2)�(1/2)

×
∫ Aα(r/2,z);α(r/2,z′),α(z,z′)

0
sin2n ϕ dϕ. (48)

We have thus reduced χ(r) to a two dimensional integral:

χ(r) = − 2π2n

n�(n+1/2)�(n)�(1/2)

×
(

2
∫ 1−r/2

0
dz

∫ 1−r/2

0
dz′(α(r/2, z′)/2π)2n(α(z, z′)/2π)2n

×
∫ Aα(r/2,z);α(r/2,z′),α(z,z′)

0
dϕ sin2n ϕ
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+
∫ 1−r/2

0
dz

∫ 1−r/2

0
dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

×
∫ Aα(z,z′);α(r/2,z),α(r/2,z′)

0
dϕ sin2n ϕ

+2
∫ 1−r/2

0
dz

∫ 1−r/2

0
dz′(α(r/2, z′)/2π)2n(α(z,−z′)/2π)2n

×
∫ Aα(r/2,z);α(r/2,z′),α(z,−z′)

0
dϕ sin2n ϕ

+
∫ 1−r/2

0
dz

∫ 1−r/2

0
dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

×
∫ Aα(z,−z′);α(r/2,z),α(r/2,z′)

0
dϕ sin2n ϕ

)
. (49)

(The integral over ϕ may be evaluated using (12).) We need to determine
which values of z and z′ correspond to which functional form of Aa;b,c.
We will use the fact that for all z, z′ for which 0� z, z′ �1− r/2

α(r/2, z)2 � (α(r/2, z′)+α(z, z′))2 (50)

and

α(z, z′)2 � (α(r/2, z)−α(r/2, z′))2. (51)

Since z′ �1− r/2� r/2, the first inequality is obvious. The second inequal-
ity follows from the first inequality. Since α(z,−z′)�α(z, z′) for all z and
z′, α(z, z′) could be replaced by α(z,−z′) in (50) and (51). It follows from
(47), (50) and (51) that

Aα(r/2,z);α(r/2,z′),α(z,z′)

=
{

0 if α(r/2, z)2<(α(r/2, z′)−α(z, z′))2,
arccos α(r/2,z

′)2+α(z,z′)2−α(r/2,z)2
2α(r/2,z)α(z,z′) if (α(r/2, z′)−α(z, z′))2<α(r/2, z)2

(52)

and

Aα(z,z′);α(r/2,z),α(r/2,z′)

=
{

arccos α(r/2,z)
2+α(r/2,z′)2−α(z,z′)2

2α(r/2,z)α(r/2,z′) if α(z, z′)2<(α(r/2, z′)+α(r/2, z))2,
π if (α(r/2, z′)+α(r/2, z))2<α(z, z′)2.

(53)
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We need to translate the equation α(r/2, z)2 = (α(r/2, z′)− α(z, z′))2
into an equation involving z and z′. This can be done by using the defini-
tion of α and expanding both sides. In this way it can be shown that

Aα(r/2,z);α(r/2,z′),α(z,z′)

=
{

0 if z′>ar(z),
arccos α(r/2,z

′)2+α(z,z′)2−α(r/2,z)2
2α(r/2,z′)α(z,z′) if z′<ar(z),

(54)

and

Aα(z,z′);α(r/2,z),α(r/2,z′)

=
{
π if z′>ar(z),
arccos α(r/2,z)

2+α(r/2,z′)2−α(z,z′)2
2α(r/2,z)α(r/2,z′) if z′<ar(z),

(55)

where z′ =ar(z) is the positive root of the equation

3− r2 −4z2 −4zz′ −4z′2 −2rz′ +4r2zz′ +8rz2z′ +8rzz′2 −2rz=0. (56)

When r=1 this equation can be factorised as

(1−2z)(1−2z′)(1+ z+ z′)=0. (57)

Hence z′ is undetermined whenever z=1/2 in this case.
It can be shown in the same way that

Aα(r/2,z);α(r/2,z′),α(z,−z′)

=
{

0 if z′>br(z),
arccos α(r/2,z

′)2+α(z,−z′)2−α(r/2,z)2
2α(r/2,z′)α(z,−z′) if z′<br(z)

(58)

and

Aα(z,−z′);α(r/2,z),α(r/2,z′)

=
{
π if z′>br(z),
arccos α(r/2,z)

2+α(r/2,z′)2−α(z,−z′)2
2α(r/2,z)α(r/2,z′) if z′<br(z),

(59)

where z′ =br(z) is the positive root of the equation

2rz+2rz′ −4zz′ −3+4z2 +4z′2 + r2 =0 (60)
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z’

z

2

b (z)

a (z)r

r

/2

Fig. 1. The functions ar and br . ar (z)=br (z)=0 when z=− r
4 + 1

4

√
12− r2.

Since (56) and (60) are both symmetric in z and z′, we could equally
well write their solutions as z= ar(z

′) and z= br(z
′) instead. ar(z) and

br(z) for r >1 are shown in Fig. 1.
So

χ(r)= − 2π2n

n�(n+1/2)�(n)�(1/2)

×
(

2
∫ 1−r/2

0
dz

∫ ar (z)

0
dz′(α(r/2, z′)/2π)2n(α(z, z′)/2π)2n

×
∫ arccos (yα(r/2,z);α(r/2,z′),α(z,z′))

0
dϕ sin2n ϕ

+
∫ 1−r/2

0
dz

∫ ar (z)

0
dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

×
∫ arccos (yα(z,z′);α(r/2,z),α(r/2,z′))

0
dϕ sin2n ϕ

+2
∫ 1−r/2

0
dz

∫ br (z)

0
dz′(α(r/2, z′)/2π)2n(α(z,−z′)/2π)2n

×
∫ arccos (yα(r/2,z);α(r/2,z′),α(z,−z′))

0
dϕ sin2n ϕ

+
∫ 1−r/2

0
dz

∫ br (z)

0
dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

×
∫ arccos (yα(z,−z′);α(r/2,z),α(r/2,z′))

0
dϕ sin2n ϕ

+
∫ 1−r/2

0
dz

∫ 1/2

br (z)

dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

×
∫ π

0
dϕ sin2n ϕ

)
. (61)
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z’

z1/2

1/2
a  (z)

b  (z)1

1

Fig. 2. The functions a1 and b1 (here r=1). b1(z)=− 1
4 + z

2 + 3
4

√
1
3 (1−2z)(3+2z). b1(z)=0

when z= 1
2 .

where yα;β,γ = β2+γ 2−α2

2βγ . As r tends to 1, it follows from (57) that ar(z)
takes the value 1/2 for all z, as shown in Fig. 2. In the special case r=1
the integral simplifies to

χ(1)= − 2π2n

n�(n+1/2)�(n)�(1/2)

×
(

2
∫ 1/2

0
dz

∫ 1/2

0
dz′(α(1/2, z′)/2π)2n(α(z, z′)/2π)2n

×
∫ arccos (yα(1/2,z);α(1/2,z′),α(z,z′))

0
dϕ sin2n ϕ

+
∫ 1/2

0
dz

∫ 1/2

0
dz′(α(1/2, z)/2π)2n(α(1/2, z′)/2π)2n

×
∫ arccos (yα(z,z′);α(1/2,z),α(1/2,z′))

0
dϕ sin2n ϕ

+2
∫ 1/2

0
dz

∫ b1(z)

0
dz′(α(1/2, z′)/2π)2n(α(z,−z′)/2π)2n

×
∫ arccos (yα(1/2,z);α(1/2,z′),α(z,−z′))

0
dϕ sin2n ϕ

+
∫ 1/2

0
dz

∫ b1(z)

0
dz′(α(1/2, z)/2π)2n(α(1/2, z′)/2π)2n

×
∫ arccos (yα(z,−z′);α(1/2,z),α(1/2,z′))

0
dϕ sin2n ϕ

+
∫ 1/2

0
dz

∫ 1/2

b1(z)

dz′(α(1/2, z)/2π)2n(α(1/2, z′)/2π)2n

×
∫ π

0
dϕ sin2n ϕ

)
(62)
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After integration by parts, this gives integrals of the type

∫
p(x)

q(x)
√
a+bx+ cx2

dx, (63)

where p and q are polynomials. Using Maple it was thus possible to cal-
culate χ(1) for D=5, 7, 9, 11. We may now obtain from (17). Since

and can be obtained from (20) and (21), we have found B4. We
use the more compact Ree Hoover f̃ formalism(23) to present the results.
In this formalism B4 consists of only two diagrams instead of three. Here

f̃ (rij )−f (rij )=1. (64)

Thus

∅ =
= +2 + (65)

and

B4 = 1
4
∅− 3

8
. (66)

The final answer is given in Tables II, III and IV. The numerical values of
ref 18 and 19 agree with the exact result.

Table III. Exact and Numerical(14) Values of the Ree Hoover Complete Star

D ∅
4B3

2
Decimal expansion

3 − 89
280 − 219

1120

√
2
π

+ 4131
2240

arccos (1/3)
π

0.31672598803 . . .
0.31673(2)

5 − 163547
128128 − 3888425

8200192

√
2
π

+ 67183425
16400384

arccos (1/3)
π

0.11520591833 . . .
0.115211(3)

7 − 283003297
141892608 − 159966456685

217947045888

√
2
π

+ 292926667005
48432676864

arccos (1/3)
π

0.04492254969 . . .
0.044927(2)

9 − 88041062201
34810986496 − 2698457589952103

2851716013752320

√
2
π

+ 8656066770083523
1140686405500928

arccos (1/3)
π

0.01828214224 . . .
0.018286(1)

11 − 66555106087399
22760055898112 − 16554115383300832799

14916030233386680320

√
2
π

+ 52251492946866520923
5966412093354672128

arccos (1/3)
π

0.00766164876 . . .
0.0076638(8)
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Table IV. Exact and Numerical(14) Values of the Ree Hoover Ring

D − 3

8B3
2

Decimal expansion

3 4131
4480 + 657

2240

√
2
π

− 12393
4480

arccos (1/3)
π

−0.02977648205 . . .
−0.029781(8)

5 67183425
32800768 + 11665275

16400384

√
2
π

− 201550275
32800768

arccos (1/3)
π

−0.03923343804 . . .
−0.039233(3)

7 292926667005
96865353728 + 159966456685

145298030592

√
2
π

− 878780001015
96865353728

arccos (1/3)
π

−0.03505760307 . . .
−0.035055(3)

9 8656066770083523
2281372811001856 + 8095372769856309

5703432027504640

√
2
π

− 25968200310250569
2281372811001856

arccos (1/3)
π

−0.02686294042 . . .
−0.026861(3)

11 52251492946866520923
11932824186709344256 + 49662346149902498397

29832060466773360640

√
2
π

−0.01899884734 . . .

− 156754478840599562769
11932824186709344256

arccos (1/3)
π

−0.018997(3)

Table V. Contributions to the Fifth Virial Coefficient in

Three Dimensions(24,25)

Diagram Exact value

E5/B4
2 − 40949

10752

E6α/B4
2

68419
26880

E6β/B4
2

82
35

E7α/B4
2 − 34133

17920

E7β/B4
2 − 18583

5376 + 33291
9800

√
3
π

E7γ /B4
2 − 73491

35840

E8α/B4
2 unknown

E8β/B4
2 − 35731

6720 + 1458339
627200

√
2
π

− 33291
9800

√
3
π

+ 683559
35840

arccos (1/3)
π

E9/B4
2 unknown

E10/B4
2 unknown

4. DISCUSSION

Table II shows exact and numerical values of the fourth virial coeffi-
cient. Typically the relative error of the numerical value is of order 10−4.
Recently Clisby and McCoy(14) calculated higher order coefficients using
Monte Carlo methods. It is seen that the relative error increases with the
order of the coefficient, which is one of the reasons why it is desirable to
find analytic values. Table V shows the known exact values of diagrams
of the fifth virial coefficient in 3 dimensions. The diagrams E7β and E8β
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have the same coefficient, so there is so far no total contribution of
√

3/π .
We make the following conjecture:

Conjecture 1. In any dimension, the hard sphere potential (1)
allows the analytic computation of every virial coefficient Bn.

No one has so far been able to prove this conjecture, but since the com-
plete star of any number of points can be expressed in terms of an inte-
gral involving the same functions F and G used in Section 3, there is good
reason to assume that it is true and can be proven.
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